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Abstract

We introduce a novel technique, POF-Darts, to estimate the Probability Of Failure based on random disk-packing in
the uncertain parameter space. POF-Darts uses hyperplane sampling to explore the unexplored part of the uncertain
space. We use the function evaluation at a sample point to determine whether it belongs to failure or non-failure
regions, and surround it with a protection sphere region to avoid clustering. We decompose the domain into Voronoi
cells around the function evaluations as seeds and choose the radius of the protection sphere depending on the local
Lipschitz continuity. As sampling proceeds, regions uncovered with spheres will shrink, improving the estimation
accuracy. After exhausting the function evaluation budget, we build a surrogate model using the function evaluations
associated with the sample points and estimate the probability of failure by exhaustive sampling of that surrogate.
In comparison to other similar methods, our algorithm has the advantages of decoupling the sampling step from the
surrogate construction one, the ability to reach target POF values with fewer samples, and the capability of estimating
the number and locations of disconnected failure regions, not just the POF value. We present various examples to
demonstrate the efficiency of our novel approach.
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1. Introduction

1.1. Problem Statement

Estimating the probability of failure based on compu-
tational simulation models is a challenging problem in
several engineering applications including device and
system design [3, 4, 5, 6], structural and reliability anal-
ysis [7, 8, 9], fault-tree analysis [10, 11, 12], and finan-
cial systems [13, 14, 15].

The probability of failure, P, quantifies the probabil-
ity that a “failure” condition occurs, where failure is de-
fined by the value of some scalar function, f (x), falling
above/below a threshold T , e.g., the probability that a
device exceeds a certain temperature when subject to
varying environmental conditions: P( f (x) > T ), or the
voltage of a circuit node falls below a certain point when
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power supply noise fluctuates: P( f (x) < T ). A few de-
sign constraints contribute to the difficulty of estimating
P, including:
• Dimensionality: Probability of failure problems are
often more difficult when the domain D (the parameter
space of f (x)) is of high dimension, d. In real appli-
cations involving hundreds or thousands of parameters,
often the value of f (x) is dominated by only a few of
them. Therefore, f (x) can be replaced by a lower di-
mensional function involving just the significant param-
eters, but this is not always easy to achieve.
• Noise: If f (x) is noisy or has discontinuities, evaluat-
ing it at a point returns little about its behavior within a
neighborhood of the point, at which characterizing the
function becomes difficult and expensive.
• Cost: The number of required samples, which is pro-
portional to the number of points x where f (x) is evalu-
ated, is a key metric for evaluating the running time of
a probability of failure method. Cost is a critical chal-
lenge, especially when a single evaluation may require a
finite-element simulation to solve an implicit limit state
function. Cost also is a challenge for the estimation
small failure probabilities, e.g. Monte Carlo methods
require more samples to provide predictions with small

Preprint submitted to Journal of Reliability Engineering and System Safety June 22, 2016



(a) POF-Darts. (b) “Puff and Darts” courtesy of FCIT [1].

Figure 1: The name of our algorithm, POF-Darts, is inspired by the old game of “puff the dart,” [2] a.k.a. “puff and darts,”. POF-Darts (left) throws
random disks and determines the radius of each one based on the function evaluation at the disk center relative to the failure threshold and an
estimate of the Lipschitz continuity associated with the underlying function.

statistical uncertainty as the magnitude of the failure
probability decreases.
• Topology: Quantifying P is often associated with con-
cluding the parameter values leading to failure, the lo-
cation of the failure region, and its shape and topology.
As the failure probability decreases, locating the failure
region becomes a bigger challenge.

1.2. Probability Of Failure Estimation Approaches

Approaches to estimate the probability of failure of
a computational simulation model can be, in general,
categorized into a few groups, such as:
† Direct Sampling Methods. Monte Carlo (MC) sam-
pling is probably the most widely used approach for
calculating uncertainty and failure probability [16, 17,
18, 19]. MC sampling methods have many advantages:
they are simple, reproducible, easy to implement, and
work well with a variety of sensitivity analysis proce-
dures. Their main drawback is expense. A large num-
ber of samples are needed to get good estimates of small
probabilities. Many approaches have been designed to
overcome MC sampling’s expense. Latin Hypercube
Sampling (LHS) is a stratified MC sampling method. It
ensures that samples are placed in equiprobable strata
for each input parameter and “mixed” across dimen-
sions. Compared to standard Monte Carlo sampling,
LHS tends to give better coverage of the input space,
especially for small sample sizes. Also, LHS output
statistics have lower variance, especially for separable
functions [20, 21]. However, LHS and sampling-based
methods in general are very expensive as they require a
high sample budget to cover the entire domain. Impor-
tance sampling [22] involves sampling from a density

which concentrates the samples in the important (fail-
ure) region and weights those samples relative to the
original density of the input parameters. However, im-
portance sampling requires a priori knowledge of the
failure region, which is often not known.
† Surrogate-Based Approaches. Surrogate models
(also called meta-models or emulators) are commonly
used to understand output responses of systems in sev-
eral UQ problems [23]. Surrogates, in general, are very
useful in understanding trends and sensitivities [24].
They are called surrogates because they serve as a sub-
stitute for evaluating the original function using a few
function evaluations. Among the popular surrogates,
Gaussian process (GP) models [25] (also called Krig-
ing models) are governed by a covariance function, pro-
vide a spatial interpolation and an estimate of uncer-
tainty at new prediction points, and are guaranteed to go
through the points to which they are fitted. Other surro-
gate models include radial basis functions, smoothing
splines, neural networks, polynomial regression, etc.
Using surrogates to solve probability of failure prob-
lems can be tricky, however, for their sensitivity to inac-
curacies around the failure boundary.

Another surrogate approach is to construct stochastic
expansions which represent stochastic responses. For
example, the Polynomial Chaos Expansion (PCE) is
based on a multidimensional orthogonal polynomial ap-
proximation. In non-intrusive PCE for black-box func-
tions, the calculation of chaos expansion coefficients
for response metrics of interest is based on a set of
simulation response evaluations. The calculation of
these coefficients is usually performed using regression
methods or spectral projection methods. The regres-
sion approach finds the set of PCE coefficients which
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best match the simulation model responses. The spec-
tral projection approach projects the response against
each basis function using inner products and employs
the polynomial orthogonality properties to extract each
coefficient. Each inner product involves a multidimen-
sional integral which can be evaluated numerically us-
ing sampling, tensor-product quadrature, or sparse grid
approaches. Much work in the past decade has focused
on efficient calculation of these coefficients using sparse
grids and adaptive grid methods [26, 27, 28, 29].
† Approximate Methods. There are a variety of ap-
proximate methods such as FORM and SORM which
approximate the limit state function with first or second
order expansions, respectively. [30, 22]. These meth-
ods originated in civil and structural engineering, e.g.
to determine when a probabilistic load would exceed a
probabilistic capacity for a structure. These methods
are often more efficient at computing low probability
events, the tail statistics, than sampling. To make prob-
ability calculations more tractable, the user-specified
uncertain variables are transformed to standard normal
variables, i.e. independent Gaussian random variables
with mean zero and variance one. The original variables
may be non-normal and correlated. In the transformed
space, probability contours are circular. Also, the multi-
dimensional integrals which define the POF calculation
can be approximated by simple functions of a single pa-
rameter, β, called the reliability index. β is the minimum
Euclidean distance from the origin in the transformed
space to the failure boundary. This point is also known
as the Most Probable Point (MPP) of failure. There are
global and local reliability methods. Global methods
can find multiple MPPs if they exist [31, 32, 33]. Lo-
cal methods use local optimization to locate one MPP.
Subset simulation [34, 35] is a reliability based method
for estimating small failure probabilities, converting the
small region problem into a series of larger conditional
probabilities.
† Hybrid Methods. Several estimation approaches
combine existing methods. For example, LHS-GP is a
global Gaussian process surrogate built on LHS sam-
ple points instead of Monte Carlo sample points. (Note:
there are some methods which adaptively select sam-
ple points based on the prediction variance of the GP. In
this paper, when we refer to LHS-GP we mean a non-
adaptive version, where a GP is built over a fixed LHS
sample). EGRA [32] is a global reliability method de-
signed to overcome some of the limitations of local re-
liability methods. The EGRA method begins with a GP
emulator using a very small number of LHS samples,
and then adaptively chooses where to generate subse-
quent samples in an attempt to increase the emulator

accuracy in the vicinity of the failure boundary. The
resulting GP model is then sampled using multimodal
adaptive importance sampling to calculate the probabil-
ity of failure. By locating multiple points on or near the
failure boundary, complex and nonlinear boundaries can
be modeled, allowing a more accurate POF estimate.
Because EGRA concentrates samples in the area where
accuracy is important (i.e. in the vicinity of the failure
boundary), it is relatively efficient in number of samples
required.

1.3. Paper Contribution
The known hybrid sampling-surrogate methods do

not have all of our desired features (e.g., efficiency and
accuracy). For example, LHS sampling is accurate but
inefficient. Accuracy comes from covering the whole
domain to find the failure regions. But this is also ineffi-
cient, requiring many samples, and these are not placed
adaptively. At the other extreme, EGRA is very efficient
because it uses the information gained from previous
samples to guide future placement, and hence requires
few samples. Its drawback is generality: it is tied to a
specific GP surrogate that does not accurately approxi-
mate noisy or discontinuous functions.

In this paper, we present a new approach to failure
probability estimation, called POF-Darts; see Figure 1.
Our key target is to quickly cover the entire domain
with sample points surrounded by protective spheres
of variable radii. We focus on an adaptive sampling
phase which uses basic concepts from computational
geometry and random sampling to speed up the conver-
gence towards the failure regions. Each time we throw
a new sample point, we surround it with a sphere based
on information we estimate about the Lipschitz condi-
tion which bounds the function value change within the
sphere. Then, based on this bounding value, we cate-
gorize that sphere as “green” when the sphere is in the
no-failure region and “red” when the sphere is in the
failure region. We use spheres to cut off wide swaths
of space requiring no further exploration. Additionally,
line-guided sampling improves the efficiency of explor-
ing the remainder of the domain. Every time we throw
a new point, the radii of the spheres around the existing
points are re-sized based on this new information added.

Once the sample budget in exhausted, we build a
surrogate on top of the sample points to approximate
the function everywhere and sample the surrogate ex-
haustively to spot the failure regions and estimate the
failure probability. In this way, we decouple the sam-
pling step from the surrogate construction and evalua-
tion steps. This decoupling enables the freedom of se-
lecting a proper surrogate model.
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Figure 2: An overview of the steps of POF-Darts.

To further motivate the POF-Darts approach, we
highlight a preliminary comparison with MC in Table 1.
In this example, we estimate a small failure probability
of 10−4 for the function given in Equation (7). The table
shows that Monte-Carlo is not accurate until 106 sam-
ple points are evaluated. In fact, for a 100/1000 MC
samples, no failures were found as no samples hit the
failure region(s), resulting in a failure probability of 0.
In contrast, POF-Darts accurately obtained the correct
failure probability with 1000 samples. Further details
of the algorithm and complete experimental results are
to follow in sections 2 and 4, respectively.

# samples: 1E2 1E3 1E4 1E5 1E6
MC: 0 0 3E-4 5E-5 9E-5

POF-Darts: 8E-5 1E-4 1E-4 1E-4 1E-4

Table 1: Convergence comparison between POF-Darts and Monte
Carlo’s probability of failure estimates, when used to sample the func-
tion defined in Equation (7), for a true failure probability = 10−4.

1.4. Algorithm Overview

We start with a Sampling Phase. We “throw” darts
sequentially until we reach the sampling budget. With
each sample, the domain is re-classified into failure, not-
failure, and unexplored subregions. We use k-d Darts in
this step. When a sample is placed, a protective sphere
surrounds it to avoid future sampling in its close vicin-
ity. New samples are only inserted in the unexplored re-
gions forcing it to shrink. By decomposing the domain
into the corresponding Voronoi diagram, we estimate
the radius of the protection sphere around a new sample
based on the size of its Voronoi cell and its local Lip-
schitz continuity. We approximate the local Lipschitz
continuity as the maximum gradient between the func-
tion value at the sample and at its significant Voronoi
neighbors found using spoke-darts.

After exhausting the sample budget, the Surrogate
Phase follows. We build a surrogate using the func-
tions evaluations at the sample points inserted in the
sampling phase. Then, we measure the volume of the
failure subregion by exhaustively sampling the surro-
gate using Monte Carlo sampling.

These steps are summarized in Figure 2. Further de-
tails about each step and supporting algorithms will fol-
low in Section 2.

1.5. POF-Darts Features

POF-Darts is generally a global method; it does not
rely on the underlying function being convex as sev-
eral methods do to guarantee convergence. By decou-
pling sampling and surrogate construction, the method
enables tunable efficient designs. The sampling phase
of POF-Darts is especially efficient because POF-Darts
tend to generate larger disks first. This forces areas far
from failure boundaries to be quickly covered and ig-
nored. A new disk may not only overlap, but actually
contain the center of an old disk of the same color,
where red disks are around failure points, and green
disks around not-failure. The disk radius approaches
zero at the failure boundary, and red and green disks are
disjoint. The uncovered space tends to be concentrated
near the failure boundary, where we are most interested
in gaining more information about the function’s behav-
ior by another sample. The entire domain will never be
covered, i.e. there will always be room for another sam-
ple, unless all the disks are the same color. The user
may specify an arbitrary budget of function evaluations.
However, we can enrich the sample set with any num-
ber of new samples if the budget increases. Our method
can always make use of data from a sample point, re-
gardless of its location, even if it was generated by an-
other method. A more conservative estimate of the Lip-
schitz continuity of the underlying function would force
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all disks to shrink leaving more room to add new sam-
ples efficiently.

1.6. Organization of Paper
Section 2 gives the algorithmic details of POF-Darts.

We provide analytic bounds on the convergence of POF-
Darts in Section 3. Section 4 presents experimental re-
sults that uses a number of analytic functions and real
engineering case studies in different dimensions, with
comparisons to LHS-GP, EGRA, and PCE. Finally, Sec-
tion 5 summarizes the major conclusions of this work
and outlines future directions.

2. POF-Darts Algorithm Details

In this section, we describe the details of the POF-
Darts algorithm, focusing on the novel adaptive sam-
pling phase. Algorithm 1 demonstrates the pseudocode
listing of the algorithm.

Algorithm 1: Pseudocode of POF-Darts.

Input: input parameters xd, with bounds
Input: T failure threshold
Input: Simulation to produce response f (x)
Input: N number of samples of simulation
Output: Probability of Failure Estimate: P =

Prob(Response ≤ T )
begin

for i = 1 to N do
Find a point i outside prior spheres, using
k-d Darts ;
while no points found to add do

reduce radii of existing spheres ;
re-run kd-darts placement to find i ;

end
evaluate f (x) at point i;
find the significant neighbors of i using
Spoke-Darts ;
compute the local Lipschitz constant at i ;
estimate the radius of the sphere at i ;
update the local Lipschitz constant at i’s
neighbors ;
update the radii of the spheres centered
around i’s neighbors ;

end
Calculate P ;

Construct Surrogate over the N points ;
Evaluate Surrogate Ns times (e.g., 1E+6) ;
P = (

∑
# surrogate responses ≤ T )/Ns ;

end

2.1. Sampling Phase
Our method is based on sampling, yet is different than

MC and LHS because the decision of where to place a
new sample depends on the locations of previous sam-
ples. We iteratively place a sample, protect its neighbor-
hood with a disk/sphere associated with a classification
and a radius. This sphere both prevents the introduc-
tion of new sample points within it, and covers part of
the domain. Adaptivity makes it possible to approach
the failure region quickly, accurately, and often with a
lower sample budget.

A popular adaptive sampling approach is Maximal
Poisson-disk Sampling (MPS) [36], where samples are
added and surrounded by disks/spheres until the whole
domain is fully covered. New sample points are sequen-
tially and uniformly selected from the remainder of the
domain not already covered, the void. In a maximal
sampling, this proceeds until all of the domain is cov-
ered. Poisson-disk sampling with a constant disk radius
produces a half-radius sphere packing, while variable-
radii Poisson-disk Sampling [37] is a non-uniform ver-
sion of MPS where the radius of a disk depends on
some function of the position of its center. Poisson-disk
sampling, however, poses serious algorithmic and im-
plementation challenges in high dimensions. Moreover,
in a probability of failure problem, coverage maximal-
ity is not necessarily required, especially with a limited
sample budget. To efficiently address high-dimensional
problems, an adaptive sampling solution is k-d Darts,
which is a sampling method that uses k-dimensional
dart searches [38] to sample high-dimensional domains,
with no background data structures. Most similar al-
gorithms use some sort of background grid to repre-
sent high-dimensional domains, while k-d Darts does
not. Therefore, it is most suitable for exploring and
tracking the failure regions in a domain as part of POF-
Darts. Basically, k-d Darts evaluates a function along a
k-dimensional dart. In general, a k-d dart is a general-
ization of a point sample to higher dimensions, and is
defined as a set of flats of dimension k, where k = 0 is
points, k = 1 is lines, k = 2 is planes, etc. The flats are
embedded in d dimensions, and aligned with the coor-
dinate directions for simplicity and efficiency. A k-flat
has (d−k) fixed coordinates, and k free coordinates. One
dart has (d choose k) flats, one flat for each combination
of fixed coordinates.

Figure 3(a–c) explains that the higher the dimension
of a dart, the more adept it is at finding (intersecting) a
small region of interest. Figure 3(d) provides an illus-
trative example of k-d darts in 2d where lines are used
to sample planes and then points are used to sample the
uncovered regions of that line. At each iteration, the
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new dart is subdivided into segments that are not cov-
ered by any prior disks, and one new point is uniformly
selected from these segments surrounded by a new disk
centered there, declaring a hit. A miss is when there are
no such segments, at which we proceed to the next dart
throw. Note that in general, there are O(n) subsegments,
which can be generated in O(n log n) time. In low di-
mensions there are good ways of speeding up proximity
checks, but these become less effective as the dimen-
sion increases. Upon applying the k-d darts component
within POF-Darts (in contrast to basic MPS), it is im-
portant to note that the radii of the disks are not constant,
which enables fast convergence by placing large disks
in areas far from the failure regions. Also, maximality
of domain coverage is not the target. The termination
criteria is typically exhausting the sample budget.

2.1.1. Disk Category and Radius Estimation
As a new sample is added at xi, we implicitly con-

struct the corresponding Voronoi diagram around the
sample points as “seeds”. The Voronoi diagram is a
space partitioning technique where each partition or cell
combines all points that are closer to its seed than all
other seeds. We then compute two scalar quantities:

• The function evaluation f (xi). The sign of f (xi) −
T determines whether it is a red failure disk or a
green not-failure disk.

• The Lipschitz continuity, approximated as the lo-
cal maximum gradient

gi = max
j

| f (xi) − f (x j)|
||xi − x j||

(1)

for every pair of Voronoi neighbor samples j.
We use the Spoke Darts algorithm [39] to ap-
proximately find the significant neighbors of any
Voronoi cell/seed.

The radius of the newly added sphere is given by

r(xi) =
| f (xi) − T |

αgi
(2)

where T is the failure threshold, and α is a scale factor
typically set to 2 to account for the error resulting from
calculating the Lipschitz continuity at a discrete number
of neighbors (rather than a continuous range).

Note that the computation of the Lipschitz continuity
is not computationally demanding. The Voronoi neigh-
bors of each point are found with the Spoke Darts al-
gorithm which employs random dart throwing and effi-
ciently finds the neighbor cells. We then use complete

enumeration over all neighbor points in Eq. 1 to find
the maximum gradient: we do not use an optimization
algorithm. We use this maximum gradient to update the
radius around point xi as shown in Eq. 2. In a local op-
eration, the neighbors of xi also update their radii using
the same rule in Eq. 2. If all the neighbors had the same
function value (up to a small tolerance), αgi could be
very close to 0, which results in spheres with very large
radii. To avoid this problem, we lower bound αgi at a
value of 0.1. Finally, note that the failure threshold T
can be zero or any real number less than infinity. The
case of T=0 can represent an implicit limit state.

2.1.2. Improving Disk Radius Estimation
To further improve the estimate of the disk radius

r(x), we apply a few more rules to adjust sphere radii:
Mitigating Estimation Errors. There are a few pos-
sible types of radius estimation errors, mainly: overes-
timation and underestimation; see Figure 4 for a pic-
torial overview. Overestimation causes inaccuracy, and
underestimation causes inefficiency. This could be con-
trolled by changing the value of α in (2). If the k-d darts
algorithm reaches a maximum number of misses, that
means we have over-estimated radii. We, then, multiply
α by 3/2, forcing radii to decrease, and apply (2) to all
existing disks. Shrinking all disks opens up more space
for throwing more k-d darts successfully.
Avoiding Overlapping Disks. If red and green disks
overlap, this shows that the estimation of the radius was
too large; see Figure 4. We use a simple rule that recti-
fies the overlap locally and concentrates future samples
where our models and assumptions have proven to be
inaccurate. We revise each pair of opposite-color disks
sequentially as they are discovered. We use a linear ap-
proximation of the function between the two disk cen-
ters a and b. We define slope L = ( f (a)− f (b))/‖a−b‖2,
and new radii r(a) = | f (a)|/L and r(b) = | f (b)|/L. This
results in the two disks being just tangent.
Correcting Covered Failure Regions. If a non-failure
disk is too large, it may completely cover a failure re-
gion. A large failure disk overlapping the non-failure
region also produces inaccuracy. We occasionally (1 in
25 samples) add the farthest Voronoi vertex of an ap-
proximate cell, which may lie inside a disk. This sample
may correct an overestimated radius.

2.2. Surrogate Phase

2.2.1. Surrogate Construction
After reaching the user-specified function evaluations

budget, we build a surrogate based on the disk centers
to approximate the function everywhere in the domain.
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(a) 99 Points Darts (b) 6 Line Darts (c) 1 Plane Darts (d) 2d k-d darts

Figure 3: k-d darts sampling using points (a), lines (b), and planes (c). k-d darts of higher dimension are better at intersecting the region of interest
(red), especially narrow regions. To place a new 2d disk using k-d darts (d): we generate a random line, subtract the disks of previous samples to
find the uncovered part(s) of the line, and uniformly choose the center of the new disk from the uncovered part(s).
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(f) Resolving conflicts

Figure 4: If the global Lipschitz constant L is known, then a neighborhood disk of radius | f (x) − T |/L is conservative, and guaranteed to be
consistently non-failure (a) or failure (d). The optimal radius (c) is the maximum that still prevents crossing the failure threshold within the disk.
We estimate the radius with an estimate of the local Lipschitz continuity. Underestimating (b) results in less coverage and hence more function
evaluations. Overestimating (e) could result in crossing the failure threshold, and conflicts between failure and non-failure disks. Conflicts (f)
are detected and mitigated by geometrically shrinking the disks. If the overestimate is too large, a non-failure disk can cover a failure region
completely, which decreases the accuracy of the POF. We reduce the chance of that happening by conservative estimates, adjusting radii, and
occasionally inserting the farthest approximate Voronoi vertex.
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Since our sampling phase is decoupled from the surro-
gate construction, several surrogate models can be eas-
ily employed at this point. In general, we use Global
Surrogate models, where the function value approxima-
tion anywhere depends on all available samples. Gaus-
sian Processes (GP) models are fairly standard, with a
squared exponential correlation function. The correla-
tion lengths are calculated by maximum likelihood esti-
mation.

Different surrogate models have different features and
capabilities as we will point out in Section 4, but a com-
plete study of the surrogate selection for the estimation
of the probability of failure is outside the scope of this
paper.

2.2.2. Probability of Failure Estimation
Once a surrogate model is available, we use exhaus-

tive Monte Carlo sampling to estimate the probability
of failure from the surrogate directly. Figure 5 demon-
strates that using a GP surrogate is an efficient way to
classify the unexplored regions in the coverage phase
even with few function evaluations.

(a) 100 function evaluations (b) 500 function evaluations

Figure 5: Applying POF-Darts to a test problem with 4 failure regions.
The estimated failure isocontours (red) and the exact ones (blue) are
almost on top of each other here indicating an accurate estimation.

3. Convergence Analysis

Here we study the bounds on the expected accuracy
of our P estimates. We will provide arguments leading
to the following two conclusions. First, the algorithm is
efficient except perhaps when the failure function is in-
herently difficult to explore, because the function value
is near the failure threshold over much of the domain.
(An example is a function with a large noise compo-
nent). Second, the algorithm converges very quickly
(exponentially) once a sufficient number of samples has
filled up most of the domain where the function value is
far from failure. The analysis is based on the intuition

that disks are only small near the failure threshold, so
the area far from the failure threshold is quickly filled
up with big disks. The analysis quantifies that state-
ment. Yet, as with many worst-case theory bounds, the
exact constants here are not tight. The main value of the
analysis is the rates in the bounds. We parameterize the
user-desired accuracy by two parameters: t and k. Here
t is a threshold of near-failureness, and k is multiplica-
tive factor of accuracy. We parameterize the function
difficulty by At, L, and the dimension d (indirectly). Let
the domain area be 1. Without loss of generality, let the
failure threshold be 0. Let A(R) denote the area A of a
d-dimensional region R. Let At be the area of the subdo-
main where | f (t)| < t, that is, where the function is close
to the failure threshold. The larger this area is, the more
difficult it is for our method to estimate the POF accu-
rately. (Note the lack of dependence on the area of the
failure region itself, just a dilation of its boundary. Fig-
ure 3 shows an example where At is large compared to
the actual failure region because the function is nearly
flat and close to failure.) Let At be the complement of
At. Let j be the number of samples we have generated,
and let i be the number in At, i.e. where | f (xi)| > t and
we are far from the failure boundary but could be inside
the failure region. Let D be the domain area covered by
sample disks, and D its complement.
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Figure 6: POF-Darts places more points where the function value is
near the failure threshold, that is, within At . Note that flat regions
often appear near the actual failure boundary, but we also see extended
lobes where the function is nearly constant and near failure.

To reach our conclusions, we explore the following
two questions: “After j samples, what is an upper bound
on the probability that A(D) > kAt?” and “How many
samples j do we need so that the area A(D) < kAt with
high probability?” The outline of the answers are that
disks outside At have large radius, hence there can not
be very many of them, and each one reduces the un-
covered area outside At significantly. Samples inside At

could have small radius, approaching zero, and hence
these do not help us. If we have taken many samples
then we most likely have filled up a large fraction of the
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complement of At, relative to the size of At, and hence
the uncertainty in our probability-of-failure estimate is
probably within some constant times At. We make three
simplifying assumptions for analysis: sampling is uni-
form by area in the uncovered region, L is known, and
the surrogate is not used. Generating samples by lines
introduces additional dependencies on where the region
lies relative to prior sample disks. Since Lipschitz con-
stant L exists and is known, we can size the disk for
sample x correctly with radius rx = | f (x)|/L. 1

3.1. Accuracy on the Fly
We reach our first conclusion indirectly, by consid-

ering an estimate of the accuracy of a run in progress.
Run the algorithm, and select t and k and observe quan-
tities j and i, and also the uncovered area D. Consider
the remaining area D j = G j of the domain outside all
disks after j samples. Suppose that the uncovered area
is large compared to At, that is G j > kAt; then we show
this happens with low probability. For m ≤ j let Fm be
the uncovered area inside At, and Fm be the uncovered
area inside At. Note F0 = At = 1 − At, and F j is de-
creasing. Note D = G0 = 1 and Gm = (Fm + Fm) is
strictly decreasing. The probability of the next sample
landing in Fm is Fm/Gm and in Fm is Fm/Gm. There are
many permutations of which of the i samples lie in At

and which ( j − i) of them lie in At. For example, for the
first permutation P of all i samples in At occurring first,

pPi( j−i) =
F0

G0

F1

G1
. . .

Fi

Gi

Fi+1

Gi+1

Fi+2

Gi+2
. . .

F j

G j

To find an upper bound on this value, note Fm/Gm ≤ 1
so we may discard the over-lined terms. Moreover Fm ≤

F0 = At, so we may replace all the non-over-lined F by
At. By assumption Gm > kAt, so we replace the non-
discarded denominators by kAt. Hence the probability
of this, or any permutation, occurring is less than k− j+i.

There are
(

j
i

)
permutations, so the probability that G j >

kAt is bounded by

p(G j > kAt) <
(

j
i

)
k− j+i. (3)

Observe that this is a rapidly decreasing function of j for
j > i. The right hand side is implicitly dependent on t,

1Occasionally sampling at the farthest Voronoi vertex (e.g. 1 in
25 samples) shows that the algorithm still converges in the absence
of a known or even extant Lipschitz constant, because in the limit
the sampling is dense. Given a bad L it will still converge, but we
cannot guarantee our good convergence rate. This is similar to the
convergence proof of DIRECT [40, 41].

through the definition of i. In principle, one could com-
pute this value during a run of the algorithm for a con-
crete problem, answer the question “At this stage of my
sampling process, what is the probability that the am-
biguous uncovered region is larger than kAt?” and use it
as a stopping criteria. This formula is easier to compute
than the union-volume POF upper bound, given by the
area of the observed uncovered region plus the failure
disks. However Equation 3 only gives a smaller upper
bound than union-volume in the case that the uncovered
region is large compared to the observed failure region.
But that is precisely when the POF estimate is inaccu-
rate, so the smaller bound is not useful. The main thing
that this formula does provide is the confidence that if
the estimate is inaccurate, it is because there is a large
area that is near failure. That is, this shows that the al-
gorithm is only inefficient when the failure function is
inherently difficult to explore, our first conclusion.

3.2. A Priori Sample Budget

We reach our second conclusion, on the expected
convergence rate, also indirectly. We consider the ques-
tion of “Before I’ve begun sampling, how many samples
j should I budget to ensure p(G j > kAt) is small?”

We first consider the question of how many large
sample disks, with | f (x)| > t, can exist. We answer this
with an area argument. Note that half-radius disks do
not overlap. Since rx = | f (x)|/L ≥ t/L, each large sam-
ple disk covers a unique area of at least V(t/(2L)) where
V(r) is the volume of a sphere with radius r, and is ex-
ponential in dimension. For unit-area domains without
boundary, e.g. a periodic unit cube, an upper bound on
the number of samples I that can lie outside of At is

I <
1

V(t/(2L))
. (4)

Let us select j > I, and recall I is dependent on t. Note
p(G j > kAt) for all i ≤ I is bounded by (3). Hence

p(G j > kAt) <
∑
i≤I

(
j
i

)
k− j+i. (5)

This is a very rapidly decreasing function, which leads
to our second conclusion: after sufficient samples are
added, the accuracy of the probability of failure esti-
mate increases exponentially. Here “sufficient” depends
on the desired accuracy t and k, and the difficulty of
the domain based on its At, L and dimension. Compre-
hending this abstract statement is challenging due to the
large number of parameters and caveats. For illustra-
tion let us consider a concrete example. Let t = 0.1,
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k = 2, and L = 1. Thus the unique coverage radius of
far-from-failure disks is rx = 0.05. Let the domain be
two-dimensional, so V(rx) ≈ 0.0079. Let the domain be
a non-periodic unit square; let us dilate it by t in order to
fully contain the unique-coverage disks. Then the area
of the dilated domain is 1.44 and I = 183. We plot this
function in Figure 7 for j near 4I.
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Figure 7: The upper bound on the probability that the POF estimate
is inaccurate becomes vanishingly small as enough samples are added
in the ambiguous near-failure regions.

Note that in the span of thirty samples the probability
of inaccuracy becomes vanishingly small. The reader
may be concerned that this concrete example is 2D, has
a high POF, and requires hundreds of samples. We re-
iterate that the analysis is not tight, e.g. we assumed
all far-from-failure disks were the smallest possible and
made many loose simplifications in the combinatoric ra-
tios. That is, the value of the analysis is the conver-
gence rate rather than the particular constants. The ex-
ponential convergence is not directly to the actual fail-
ure value, but to a small factor of the size of the near-
failure region. The “small-factor” and “near-failure”
can be chosen arbitrarily close to the actual failure value
and region, which pushes out the threshold number of
iterations, but not the convergence rate once that thresh-
old is reached. We believe this rate and approximation
compare very favorably with the j−1/2 of Monte Carlo
sampling, and even with the polynomial convergence of
methods such as sparse grids.

4. Experimental Results

This section evaluates the performance of POF-Darts
compared to EGRA, LHS-GP and PCE, when applied
to various low to moderate dimensional (2D to 9D) test
problems. The particular implementations of the meth-
ods evaluated in this study are those in the DAKOTA
software package [42]. The DAKOTA implementation
of the POF-Darts method is presently restricted to prob-
lems with uniform PDFs for the input uncertainties. Ac-

cordingly, the test problems involve only uniform input
uncertainties.

With Polynomial Chaos Expansions, we use a full
tensor product quadrature grid of points in the 2-D prob-
lems below, with a quadrature order of five for a total of
25 sample points. We use sparse grids for the higher-
dimensional problems. These grid points are used to
build the expansion using a spectral projection approach
which projects the response against each basis function
using inner products and employs the polynomial or-
thogonality properties to extract each coefficient. Af-
ter the coefficients of the expansion are determined, we
sample the expansion with one million samples to ob-
tain the probability of failure estimates.

With LHS-GP, a Gaussian process is constructed over
a specified number of LHS sample points. Then, the GP
is evaluated at a large number of sample points (106),
and the ratio of the sampled failed points to the total
points is used as the estimate of the probability of fail-
ure. Note that POF-Darts and EGRA involve adaptive
sampling, whereas PCE and the sampling of LHS-GP
are non-adaptive, without feedback from the response
samples to guide further sampling in an adaptive man-
ner. Non-adaptive sample values can be used to esti-
mate POF values for multiple threshold levels for vari-
ous response quantities from a physics model such as
pressure, temperature, etc. and at multiple points in
time and/or space simultaneously (e.g. with one set of
samples). This generality, however, makes non-adaptive
methods often less accurate than adaptive methods for a
single POF quantity of interest. Non-adaptive methods
are included in the current study to assess any accuracy-
cost penalty that these methods incur relative to the
adaptive methods (POF-Darts and EGRA) when one is
interested in only one specific POF quantity.

We first apply POF-Darts and the other methods to
four analytic problems that have been chosen to high-
light various features. We study their adaptive sampling
behavior, error performance, and sensitivity to failure
threshold. Furthermore, we extend our experimental
tests to a 5D circuit design engineering problem, and
a 9D steel column engineering problem. For each prob-
lem, we ran each algorithm twenty times (POF-Darts,
EGRA, and the LHS-GP). Note that PCE uses determin-
istic sampling. We then calculated the mean of the prob-
ability of failure over all twenty estimates, the standard
deviation, and the relative average absolute error of the
twenty estimates. These statistics are reported in tables.
Additionally, we repeated each experiment varying the
number of samples to understand the convergence be-
havior against the number of samples. EGRA has some
internal controls which specify the termination criteria

10



in its current implementation, so we cannot specify the
sample size; it is determined by the EGRA algorithm.

4.1. 2-d Analytic Functions

To highlight the capabilities of POF-Darts, we first
apply it to a few analytic 2D test problems that have
different features, making them challenging for failure
estimation and also optimization and uncertainty quan-
tification problems in general. These test functions are
(1) the smooth Herbie function [43] which is a relatively
smooth function, (2) the Herbie function which has a
high frequency sine component (smooth noise) that cre-
ates a large number of local minima and maxima, (3)
the circular cone which has a single singularity at the
origin, and its local (and global) Lipschitz is unity ev-
erywhere, and (4) the planar cross [38] which expands
the cone’s single singularity along the main axes. The
D-dimensional versions of these functions are given by
the following equations, respectively:

f1(x) = −

M∏
d=1

e−(xd−1)2
+ e−0.8(xd+1)2

(6)

f2(x) = f1(x) − 0.05 sin (8 (xd + 0.1)) (7)

f3(x) =

 M∑
d=1

x2
d

1/M

(8)

f4(x) =

 M∏
d=1

1 + cos(2πxd)
2

1/M

(9)

For illustration, Figure 8 shows these functions in
2D along with their iso-contours at different constant
threshold values. The topology of failure regions vary
from multiple closed shapes to open regions.
Comparing Sampling Approaches. We first look at
the sampling phase of the POF-Darts, EGRA, LHS-GP
and PCE. In Figure 9, we study the Herbie function
when the failure regions are associated with a threshold
T = −0.875. Figure 9 shows the actual sample points
placed with each method; there are no surrogate
evaluations shown in this figure. The true probability
of failure associated with this threshold is P = 0.2885.
The two non-adaptive methods: PCE (structured),
and LHS (the sampling part of LHS-GP, random)
continuously place points all over the domain, without
attention to information gained from previous samples
about the failure regions. On the adaptive side, EGRA
guides points towards the failure regions, however, it
converges before enough samples are placed around
the boundaries of the failure regions. Our proposed

method, POF-Darts, quickly guides points towards the
boundaries of the failure regions to quickly identify its
volume and topology. Figure 10 illustrates the power of
adaptivity in placing 5000 samples around the failure
regions for the smooth Herbie, Herbie, cone, and cross
functions, respectively. All 5000 samples are plotted in
this figure, and no surrogate evaluations are shown.

Comparing POF Approaches.
To quantify the performance of different methods, we

run each experiment Nt times and compute the follow-
ing metrics: µ: the average of the Nt probability of fail-
ure estimates, σ: the standard deviation over the Nt tri-
als, and e: the relative average absolute error given by
the following formula:

e =
µ|et |

Ptrue
=

1
Nt

∑Nt
t=1 |Pt − Ptrue|

Ptrue
(10)

where Ptrue is the true value of the probability of failure,
|et | is the absolute trial error, and µ|et | is the average of
trials’ absolute errors. Table 2 shows these metrics for
the four functions when POF, EGRA, LHS-GP, and PCE
are used. Three different threshold levels are employed
to result in true POF values of 10−4, 10−3, and 10−2.
Figure 11 shows the error variation of the four methods
against the sample budget.
Extension to High-Dimensions. To illustrate perfor-
mance in higher dimensions, we study the smooth Her-
bie function in 2, 3, 4, and 5-dimensions, when the prob-
ability of failure is estimated using POF-Darts and LHS-
GP.

Figure 12 shows the error performance in these four
cases. Comparing the performance of LHS-GP and
POF, POF curves clearly continued to converge even
at higher dimensions while LHS-GP started to saturate
in 4D and 5D. Furthermore, varying the failure thresh-
old in high dimensions pushes the error performance of
LHS-GP to saturate quickly at lower failure probabil-
ities which are harder to estimate, while that of POF
continues to converge.

4.2. 5-d Circuit problem

A numerical model of a proprietary circuit with uni-
form PDFs for 5 model inputs is assessed next. De-
tails of the circuit model cannot be presented, but the
performance of the POF methods on representative fail-
ure probability problems can be presented. A thresh-
old value for one of the output responses which gives
a circuit probability of failure value around 0.0001 was
determined. Table 3 lists failure probability estimates,
while Figure 13(a) shows the error variation of the four
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Figure 8: 2D test functions and their iso-contours for different threshold values.

f(x) T P POF (N=1000) EGRA (N=55) LHS-GP (N=1000) PCE (N=529)

µ σ e µ σ e µ σ e µ σ e

Sm.Herbie
-1.0937 10−4 1.0E-4 9.4E-6 0.07 4.9E-5 6.1E-5 0.69 1.0E-4 9.9E-6 0.07 4.5E-3 0.0 0.51
-1.0901 10−3 1.0E-3 2.7E-5 0.02 5.4E-4 4.1E-4 0.46 1.0E-3 2.1E-5 0.02 8.8E-2 0.0 0.43
-1.0631 10−2 1.0E-2 9.3E-5 0.008 8.5E-3 2.9E-3 0.15 9.9E-3 1.2E-4 0.008 4.7E-2 0.0 0.18

Herbie
-1.1257 10−4 9.7E-5 9.3E-6 0.09 5.6E-3 6.7E-5 55.2 9.5E-5 8.3E-6 0.07 5.6E-3 0.0 55.2
-1.1152 10−3 9.9E-4 3.6E-5 0.03 3.0E-4 4.4E-4 0.72 9.9E-4 3.1E-5 0.03 8.2E-3 0.0 7.17
-1.0731 10−2 1.0E-2 1.1E-4 0.01 5.9E-3 4.3E-3 0.47 1.0E-2 7.6E-5 0.006 8.2E-3 0.0 0.18

Cone
0.0113 10−4 1.0E-4 8.7E-6 0.007 8.3E-5 4.9E-5 0.41 5.9E-5 1.9E-4 1.34 0.0 0.0 1
0.0357 10−3 9.9E-4 3.1E-5 0.002 6.6E-4 2.6E-4 0.34 9.8E-4 4.9E-4 0.35 0.0 0.0 1
0.1128 10−2 9.8E-3 9.2E-5 0.008 9.7E-3 1.3E-3 0.07 9.5E-3 1.4E-3 0.12 1.0E-2 0.0 1.4E-2

Cross
1.87E-5 10−4 1.2E-4 2.2E-4 1.26 9.0E-3 2.5E-4 0.07 6.0E-5 2.7E-4 1.50 0.0 0.0 1
0.0002 10−3 9.4E-4 3.4E-4 0.28 7.1E-3 9.6E-3 0.34 1.7E-3 1.2E-3 1.14 0.0 0.0 1
0.0031 10−2 1.2E-2 1.4E-3 0.17 1.2E-2 4.7E-4 0.08 9.9E-3 2.4E-3 0.19 9.1E-4 0.0 0.9

Table 2: Performance metrics: µ, the mean of the probability of failure over 20 trials, σ, the standard deviation, and e, the relative average absolute
error, for different 2d analytic functions using POF, EGRA, LHS-GP, and PCE. Note that an average of 0 means no failure regions were found
indicating that e = 1. Also, the standard deviation of PCE experiments is set to 0.0 as it involves deterministic sampling with no trial variation.

methods against the sample budget. The reference value
mean estimate of the exact failure probability based on
four million samples is 1.6475E−4 ± 2.81E−5 and the
95% confidence interval is [1.370E-4, 1.930E-4].2

EGRA converged with 31 function evaluations and

2Note: we used the following to obtain these confidence inter-
vals: If the random-variable uncertainty space is randomly sampled
via Monte Carlo sampling, then the number of model response val-
ues (sample values) that exceed the threshold T, divided by the total
number of samples, provides an estimate P* of the true failure proba-
bility P of the system. If enough samples are taken, then the estimate

the PCE sparse grid for this problem required 71 eval-
uations. Both EGRA and PCE gave estimates of the

P* can be said with some percent likelihood or “confidence” to lie
within a corresponding confidence interval of the true result P. When
the number N of total samples meets the condition [44]

N ∗ P ≥ 5 (11)

then the following formula for the 95% confidence intervals (CI) ap-
plies:

|P − P∗ | ≤ 1.96[P(1 − P)/N]1/2. (12)
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(a) EGRA.
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(b) PCE with 25, 225, and 625 samples.

x1

-2 -1 0 1 2

x 2

-2

-1.5

-1

-0.5

0

0.5

1

1.5

2

x1

-2 -1 0 1 2

x 2

-2

-1.5

-1

-0.5

0

0.5

1

1.5

2

x1

-2 -1 0 1 2

x 2

-2

-1.5

-1

-0.5

0

0.5

1

1.5

2

x1

-2 -1 0 1 2

x 2

-2

-1.5

-1

-0.5

0

0.5

1

1.5

2

(c) LHS with 100, 500, 1000, and 5000 samples.
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(d) POF-Darts with 100, 500, 1000, and 5000 samples.

Figure 9: Comparing the sampling phase of different methods applied to the Herbie function. Plots show the samples when using EGRA, PCE
(with quadrature order of 5, 15, and 25), LHS (with 100, 500, 1000, 5000 samples), and POF-Darts (with 100, 500, 1000, 5000 samples). In this
illustrative example, the target failure threshold is T = −0.875 which results in a probability of failure P = 0.2885. Although EGRA is adaptive,
it stops before the failure boundaries are sampled enough. On the other hand, PCE is structured and LHS is random; however they are both
non-adaptive, hence the waste a lot of samples away from the failure regions. Our method, POF-Darts, adaptively places new samples around the
boundaries of the failure regions, quickly capturing its volume and topology.
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Figure 10: The sample distribution of POF-Darts when 5000 samples are used to adaptively sample smooth Herbie (T = −0.9), Herbie (T =

−0.875), circular cone (T = 0.5), and planar cross (T = 0.2), listed left to right, respectively.
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Figure 11: Error variation against the sample budget for different 2d analytic functions using POF, EGRA, LHS-GP, and PCE.

T P POF (N=100) EGRA (N=31) LHS-GP (N=100) PCE (N=71)

µ σ e µ σ e µ σ e µ σ e

0.84 1.6475E − 4 1.43E-5 1.24E-5 0.13 1.57E-4 1.09E-5 0.07 1.056E-5 3.58E-5 0.36 1.612E-4 1.147E-5 0.05

Table 3: Failure probability estimates for 5D Circuit problem using POF, EGRA, LHS-GP, and PCE.

mean POF that are reasonably accurate. LHS-GP did
not perform well on this problem, even at large number
of samples. The relative average error was quite high
for the GP surrogates based on LHS points: even with
1000 samples, it was 40%. POF-Darts performs well
on this problem: at 100 samples, it has 13% average
error and the average error decreases to 8% at 200 sam-
ples. The standard deviations of the POF estimates for
EGRA, PCE, and POF-Darts are similar.

4.3. 9-d Steel column problem
This problem involves determining the probability

that the stress on a steel column will not meet a spec-
ified margin of safety relative to its yield stress Fs.
The problem is based on the reliability problem in [45]

and [46]. Nine uncorrelated random variables are used
in the problem as defined in Table 4.

Variable Lower Bound Upper Bound
Fs: yield stress, MPa 260 575
P1: dead weight load, kN 250 650
P2: variable load, kN 150 870
P3: variable load, kN 150 870
B: flange breadth, mm 185 215
T : flange thickness, mm 11.5 27.5
H: profile height, mm 75 125

D0: initial deflection, mm -20 80
E: elastic modulus, MPa 1 41

Table 4: Uniform PDF Inputs for Steel Column Problem

The failure boundary function defining the margin g

14



Number of samples
101 102 103 104

%
 a

ve
ra

ge
 e

rro
r

10-2

10-1

100

101

102

2d
3d
4d
5d

(a) LHS-GP.

Number of samples
101 102 103 104

%
 a

ve
ra

ge
 e

rro
r

10-2

10-1

100

101

102

2d
3d
4d
5d

(b) POF-Darts.

Figure 12: Comparing error performance of POF and LHS when GP
global surrogates are employed for 2, 3, 4, and 5-dimensional smooth
Herbie functions targeting P = 10−4.
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Figure 13: Error variation against the sample budget for the 5d circuit
problem and 9d steel problem using POF, EGRA, LHS-GP, and PCE.

is calculated from the following equations:

g = Fs − P
(

1
2BT

+
F0

BT H
Eb

Eb − P

)
(13)

where

P = P1 + P2 + P3 (14)

Eb =
π2EBT H2

2L2 (15)

and the column length L is 7500mm.
A positive safety margin exists when the value of g is

positive. We specify a desired safety margin of g=260
MPa, and determine the probability that this margin is
not met: Prob(g ≤ 260 MPa). The failure probability for
this problem with the specified inputs is approximately
0.001. Table 5 lists failure probability estimates from
the various methods, while Figure 13(b) shows the error
variation of the four methods against the sample budget.

The reference value mean estimate of the exact failure
probability based on three million samples is 1.035E-3
± 2.4843E-5 and the 95% confidence interval on this
estimate is [1.0102E-3, 1.0598E-3].

In this problem, all methods performed comparably.
EGRA and PCE required 116 and 199 samples, respec-
tively, and both had 2% average error. The GP surro-
gates performed very well on this problem, achieving
excellent accuracy and precision with as little as 50 sam-
ples. Reasonable performance with such few samples
indicates that the function is probably only mildly non-
linear over the UQ space. For a very small sample size
of 25 samples, POF-Darts was not as accurate, but be-
came more accurate based on more samples. GPs were
not tried with 25 samples because the current implemen-
tation in DAKOTA does not allow GPs to be used with
such few samples for a 9D problem.

5. Concluding Remarks

We introduced a new technique to estimate the Prob-
ability Of Failure P based on a computational geometry
approach: POF-Darts. POF-Darts involves two sepa-
rate steps: sampling and surrogate construction. For
the sampling phase, POF-Darts uses k-d Darts to sample
high-dimensional domains. Using spheres with variable
radii, we adaptively cover the domain, using local Lips-
chitz information to decide on the radius of an added
disk and update the radii of previously placed ones.
Once the sampling budget is completely used, we con-
struct a global surrogate model and sample it exhaus-
tively with Monte Carlo to evaluate the function every-
where, quantify the probability of failure, and identify
the topology of the failure regions.

We evaluated POF-Darts for a variety of analytic and
realistic problems ranging in dimensionality from 2-d to
9-d. POF-Darts performs favorably compared to sim-
ilar methods such as LHS-GP, EGRA, and PCE. The
adaptive placement of points is a very useful feature of
the algorithm: POF-Darts can efficiently cut away large
swaths of the space which are far from the failure re-
gion with large hyperspheres in regions far away from
failure. In this way, POF-Darts can concentrate its sam-
ples around the failure boundaries as shown in Figures 9
and 10. Monte Carlo methods would require many more
samples to get such coverage around a failure bound-
ary. Because of this, we expect our method to perform
well on problems even higher than 9-dimensions. Our
method has the advantage of being able to detect the
failure topology (number of simply connected failure
regions) and discontinuities.

We present a convergence analysis of the POF-Darts
method in Section 3. The convergence is primarily gov-
erned by the number of sample points it takes to fill the
non-failure regions and not the accuracy of the surro-
gate. As stated in Section 3, the POF-Darts algorithm
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T P POF (N=100) EGRA (N=116) LHS-GP (N=100) PCE (N=199)

µ σ e µ σ e µ σ e µ σ e

260.0 1.035E-3 1.030E-5 3.26E-5 0.03 1.023E-5 2.126E-5 0.02 1.029E-3 1.865E-5 0.01 1.027E-3 1.793E-5 0.02

Table 5: Failure probability estimates for 9-D Steel Column Problem using POF, EGRA, GP, and PCE.

converges very quickly (exponentially) once a sufficient
number of samples has filled up most of the domain
where the function value is far from failure. Our conver-
gence analysis focuses on bounds on the probability that
the remaining volume in parameter space is not covered
by disks. While we have established the convergence
of POF-Darts in the limit, we have not yet addressed
the accuracy of the surrogate and its effect on the re-
sulting Probability of Failure estimate. This is the sub-
ject of future work. POF-Darts decouples the sampling
and surrogate construction, which allows for the pos-
sibility of investigating different surrogates and devel-
oping more elegant designs. When evaluating smooth
functions, this decoupling could lead to less efficiency
than coupled sampling/surrogate methods like EGRA,
where the probability of failure estimation based on the
GP is used to augment the sample set. However, de-
coupling is advantageous for the case of discontinuous
functions. Even without a tight coupling, the empiri-
cal evidence that we present demonstrates competitive
results for failure estimates from POF-Darts. We plan
to investigate methods to incorporate coupling between
the sample points and the surrogate type/accuracy. This
will involve changing the POF-Darts algorithm to al-
low for the placement of additional points based on the
Probability of Failure accuracy from surrogate informa-
tion. We are also developing a version of POF-Darts
which uses local surrogates (e.g. constructing a sep-
arate surrogate within each disk and not one global GP
surrogate.) The POF-Darts approach is unique due to its
basis in computational geometry, and can be extended to
address various use cases.
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